Prefer a chat interface with context about you and your work?
On lower bounds of the density of planar periodic sets without unit distances
Determining the maximal density $m_1(\mathbb{R}^2)$ of planar sets without unit distances is a fundamental problem in combinatorial geometry. This paper investigates lower bounds for this quantity. We introduce a novel approach to estimating $m_1(\mathbb{R}^2)$ by reformulating the problem as a Maximal Independent Set (MIS) problem on graphs constructed from flat …