Upper bounds for multicolour Ramsey numbers
Upper bounds for multicolour Ramsey numbers
The $r$-colour Ramsey number $R_r(k)$ is the minimum $n \in \mathbb{N}$ such that every $r$-colouring of the edges of the complete graph $K_n$ on $n$ vertices contains a monochromatic copy of $K_k$. We prove, for each fixed $r \geqslant 2$, that $$R_r(k) \leqslant e^{-\delta k} r^{rk}$$ for some constant $\delta …