Polynomial similarity of pairs of matrices
Polynomial similarity of pairs of matrices
Let $K$ be a field, $R=K[x, y]$ the polynomial ring and $\mathcal{M}(K)$ the set of all pairs of square matrices of the same size over $K.$ Pairs $P_1=(A_1,B_1)$ and $P_2=(A_2,B_2)$ from $\mathcal{M}(K)$ are called similar if $A_2=X^{-1}A_1X$ and $B_2=X^{-1}B_1X$ for some invertible matrix $X$ over $K$. Denote by $\mathcal{N}(K)$ the …