On a conjecture concerning the $r$-Euler-Mahonian statistic on
permutations
On a conjecture concerning the $r$-Euler-Mahonian statistic on
permutations
A pair $(\mathrm{st_1}, \mathrm{st_2})$ of permutation statistics is said to be $r$-Euler-Mahonian if $(\mathrm{st_1}, \mathrm{st_2})$ and $( \mathrm{rdes}$, $\mathrm{rmaj})$ are equidistributed over the set $\mathfrak{S}_{n}$ of all permutations of $\{1,2,\ldots, n\}$, where $\mathrm{rdes}$ denotes the $r$-descent number and $\mathrm{rmaj}$ denotes the $r$-major index introduced by Rawlings. The main objective of …