Double orthodontia formulas and Lascoux positivity
Double orthodontia formulas and Lascoux positivity
We give a new formula for double Grothendieck polynomials based on Magyar's orthodontia algorithm for diagrams. Our formula implies a similar formula for double Schubert polynomials $\mathfrak S_w(\mathbf x;\mathbf y)$. We also prove a curious positivity result: for vexillary permutations $w\in S_n$, the polynomial $x_1^n\dots x_n^n \mathfrak S_w(x_n^{-1}, \dots, x_1^{-1}; …