Real-variable Theory of Anisotropic Musielak-Orlicz-Lorentz Hardy Spaces
with Applications to Calder\'{o}n-Zygmund Operators
Real-variable Theory of Anisotropic Musielak-Orlicz-Lorentz Hardy Spaces
with Applications to Calder\'{o}n-Zygmund Operators
Let $\varphi: \mathbb{R}^{n}\times[0,\infty)\rightarrow[0,\infty)$ be a Musielak-Orlicz function satisfying the uniformly anisotropic Muckenhoupt condition and be of uniformly lower type $p^-_{\varphi}$ and of uniformly upper type $p^+_{\varphi}$ with $0<p^-_{\varphi}\leq p^+_{\varphi}<\infty$, $q\in(0,\infty]$, and $A$ be a general expansive matrix on $\mathbb{R}^{n}$. In this article, the authors first introduce the anisotropic Musielak-Orlicz-Lorentz Hardy …