GNS Construction for $$C^*$$-Valued Positive Sesquilinear Maps on a quasi *-algebra
GNS Construction for $$C^*$$-Valued Positive Sesquilinear Maps on a quasi *-algebra
Abstract The GNS construction for positive invariant sesquilinear forms on quasi *-algebra $$(\mathfrak A,{\mathfrak A}_{\scriptscriptstyle 0})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mstyle> <mml:mn>0</mml:mn> </mml:mstyle> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is generalized to a class of positive sesquilinear maps from $$\mathfrak A\times \mathfrak A$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>×</mml:mo> …