$p$-adic Hodge parameters in the crystabelline representations of
$\mathrm{GL}_n$
$p$-adic Hodge parameters in the crystabelline representations of
$\mathrm{GL}_n$
Let $K$ be a finite extension of $\mathbb{Q}_p$, and $\rho$ be an $n$-dimensional (non-critical generic) crystabelline representation of the absolute Galois group of $K$ of regular Hodge-Tate weights. We associate to $\rho$ an explicit locally $\mathbb{Q}_p$-analytic representation $\pi_1(\rho)$ of $\mathrm{GL}_n(K)$, which encodes some $p$-adic Hodge parameters of $\rho$. When $K=\mathbb{Q}_p$, …