On Graphs Embeddable in a Layer of a Hypercube and Their Extremal Numbers
On Graphs Embeddable in a Layer of a Hypercube and Their Extremal Numbers
Abstract A graph is cubical if it is a subgraph of a hypercube. For a cubical graph H and a hypercube $$Q_n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Q</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:math> , $$\textrm{ex}(Q_n, H)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>ex</mml:mtext> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:mi>H</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is the largest number …