Quantitative maximal diameter rigidity of positive Ricci curvature
Quantitative maximal diameter rigidity of positive Ricci curvature
Abstract In Riemannian geometry, the Chengās maximal diameter rigidity theorem says that if a complete n -manifold M of Ricci curvature, <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mi>Ric</m:mi> <m:mi>M</m:mi> </m:msub> <m:mo>ā„</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\operatorname{Ric}_{M}\geq(n-1)} , has the maximal diameter Ļ, then ā¦