Ask a Question

Prefer a chat interface with context about you and your work?

Quantitative maximal diameter rigidity of positive Ricci curvature

Quantitative maximal diameter rigidity of positive Ricci curvature

Abstract In Riemannian geometry, the Chengā€™s maximal diameter rigidity theorem says that if a complete n -manifold M of Ricci curvature, <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mi>Ric</m:mi> <m:mi>M</m:mi> </m:msub> <m:mo>ā‰„</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\operatorname{Ric}_{M}\geq(n-1)} , has the maximal diameter Ļ€, then ā€¦