Radial Projections in $\mathbb{R}^n$ Revisited
Radial Projections in $\mathbb{R}^n$ Revisited
We generalize the recent results on radial projections by Orponen, Shmerkin, Wang using two different methods. In particular, we show that given $X,Y\subset \mathbb{R}^n$ Borel sets and $X\neq \emptyset$. If $\dim Y \in (k,k+1]$ for some $k\in \{1,\dots, n-1\}$, then \[ \sup_{x\in X} \dim \pi_x(Y\setminus \{x\}) \geq \min \{\dim X …