An explicit log-free zero density estimate for the Riemann zeta-function
An explicit log-free zero density estimate for the Riemann zeta-function
We will provide the first explicit log-free zero-density estimate for $\zeta(s)$ of the form $N(\sigma,T)\le AT^{B(1-\sigma)}$. In particular, this estimate becomes the sharpest known explicit zero-density estimate uniformly for $\sigma\in[\alpha_0,1]$, with $0.985\le \alpha_0\le 0.992$ and $3\cdot 10^{12}<T\le \exp(6.7\cdot 10^{12})$.