Ask a Question

Prefer a chat interface with context about you and your work?

Low-energy <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi></mml:math> -wave scattering of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>H</mml:mtext><mml:mo>+</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mo>โˆ’</mml:mo></mml:msup></mml:mrow></mml:math> by a Lagrange-mesh method

Low-energy <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi></mml:math> -wave scattering of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>H</mml:mtext><mml:mo>+</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mo>โˆ’</mml:mo></mml:msup></mml:mrow></mml:math> by a Lagrange-mesh method

A method combining the Lagrange-mesh and the complex Kohn variational methods is developed for computing the $\mathcal{S}$ matrix of a $2+1$ elastic scattering in the frame of three-body Coulomb systems. Resonance parameters can be obtained from values of the $\mathcal{S}$ matrix at several scattering energies. The method is illustrated with โ€ฆ