Ask a Question

Prefer a chat interface with context about you and your work?

Properties of the complementarity set for the cone of copositive matrices

Properties of the complementarity set for the cone of copositive matrices

For a proper cone $K$ and its dual cone $K^*$ in $\mathbb R^n$, the complementarity set of $K$ is defined as ${\mathbb C}(K)=\{(x,y): x\in K,\; y\in K^*,\, x^\top y=0\}$. It is known that ${\mathbb C}(K)$ is an $n$-dimensional manifold in the space $\mathbb R^{2n}$. If $ K$ is a symmetric …