Ask a Question

Prefer a chat interface with context about you and your work?

Sums of the triple divisor function over values of some quadratic forms

Sums of the triple divisor function over values of some quadratic forms

Let $\tau_3(n)$ be the triple divisor function. It is proved that $$ \sum_{1\leq n_1,n_2,n_3\leq \sqrt{x}}\tau_3(n_1^2+n_2^2+n_3^2)=c_1x^{\frac{3}{2}}(\log x)^2+ c_2x^{\frac{3}{2}}\log x +c_3x^{\frac{3}{2}} +O_{\varepsilon}(x^{\frac{13}{10}+\varepsilon}) $$ for some constants $c_1$, $c_2$ and $c_3$, updating a result of the second author and Zhang. Moreover, we show that $$ \sum_{1\leq n_1,n_2,n_3,n_4\leq \sqrt{x}}\tau_3(n_1^2+n_2^2+n_3^2+n_4^2) =c_4x^{2}(\log x)^2+c_5x^{2}\log x+c_6x^{2} +O_{\varepsilon}\left(x^{\frac{5}{3}+\varepsilon}\right) $$ …