Countably compact extensions and cardinal characteristics of the
continuum
Countably compact extensions and cardinal characteristics of the
continuum
In this paper we show that the existence of certain first-countable compact-like extensions is equivalent to the equality between corresponding cardinal characteristics of the continuum. For instance, $\mathfrak b=\mathfrak s=\mathfrak c$ if and only if every regular first-countable space of weight $< \mathfrak c$ can be densely embedded into a …