Robust Nonparametric Regression under Poisoning Attack
Robust Nonparametric Regression under Poisoning Attack
This paper studies robust nonparametric regression, in which an adversarial attacker can modify the values of up to q samples from a training dataset of size N. Our initial solution is an M-estimator based on Huber loss minimization. Compared with simple kernel regression, i.e. the Nadaraya-Watson estimator, this method can …