Noval soliton solution, sensitivity and stability analysis to the fractional gKdV-ZK equation
Noval soliton solution, sensitivity and stability analysis to the fractional gKdV-ZK equation
Abstract This work examines the fractional generalized Korteweg-de-Vries-Zakharov-Kuznetsov equation (gKdV-ZKe) by utilizing three well-known analytical methods, the modified $$\left( \frac{G^{'}}{G^2}\right)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:mfrac> <mml:msup> <mml:mi>G</mml:mi> <mml:msup> <mml:mrow /> <mml:mo>′</mml:mo> </mml:msup> </mml:msup> <mml:msup> <mml:mi>G</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mfrac> </mml:mfenced> </mml:math> -expansion method, $$\left( \frac{1}{G^{'}}\right)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:mfrac> <mml:mn>1</mml:mn> <mml:msup> <mml:mi>G</mml:mi> …