$L$-systems and the Lov\'asz number
$L$-systems and the Lov\'asz number
Given integers $n > k > 0$, and a set of integers $L \subset [0, k-1]$, an $L$-system is a family of sets $\mathcal{F} \subset \binom{[n]}{k}$ such that $|F \cap F'| \in L$ for distinct $F, F'\in \mathcal{F}$. $L$-systems correspond to independent sets in a certain generalized Johnson graph $G(n, …