Computing roadmaps in unbounded smooth real algebraic sets II: algorithm and complexity
Computing roadmaps in unbounded smooth real algebraic sets II: algorithm and complexity
A roadmap for an algebraic set $V$ defined by polynomials with coefficients in some real field, say $\mathbb{R}$, is an algebraic curve contained in $V$ whose intersection with all connected components of $V\cap\mathbb{R}^{n}$ is connected. These objects, introduced by Canny, can be used to answer connectivity queries over $V\cap \mathbb{R}^{n}$ …