Ask a Question

Prefer a chat interface with context about you and your work?

Quasiconformal, Lipschitz, and BV mappings in metric spaces

Quasiconformal, Lipschitz, and BV mappings in metric spaces

Abstract Consider a mapping <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>Y</m:mi> </m:mrow> </m:mrow> </m:math> {f\colon X\to Y} between two metric measure spaces. We study generalized versions of the local Lipschitz number <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>Lip</m:mi> <m:mo>⁡</m:mo> <m:mi>f</m:mi> </m:mrow> </m:math> {\operatorname{Lip}f} , as well as of the distortion number …