Ask a Question

Prefer a chat interface with context about you and your work?

Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices

Large deviations and phase transitions in spectral linear statistics of Gaussian random matrices

Abstract We evaluate, in the large- N limit, the complete probability distribution <?CDATA $\mathcal{P}(A,m)$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi class="MJX-tex-calligraphic">P</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:math> of the values A of the sum <?CDATA $\sum_{i = 1}^{N} |\lambda_i|^m$?> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:munderover> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> …