Ask a Question

Prefer a chat interface with context about you and your work?

Diophantine imaging reveals the broken symmetry of sums of integer cubes

Diophantine imaging reveals the broken symmetry of sums of integer cubes

Abstract We introduced a novel method for visualizing large diophantine datasets and in particular found that mapping the known integer triplets $$\{a,b,c\}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> solving either equations of the type $$a^3+b^3+c^3=d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>a</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> …