Expansions and Characterizations of Sieved Random Walk Polynomials
Expansions and Characterizations of Sieved Random Walk Polynomials
We consider random walk polynomial sequences $(P_n(x))_{n\in\mathbb{N}_0}\subseteq\mathbb{R}[x]$ given by recurrence relations $P_0(x)=1$, $P_1(x)=x$, $x P_n(x)=(1-c_n)P_{n+1}(x)+c_n P_{n-1}(x),$ $n\in\mathbb{N}$ with $(c_n)_{n\in\mathbb{N}}\subseteq(0,1)$. For every $k\in\mathbb{N}$, the $k$-sieved polynomials $(P_n(x;k))_{n\in\mathbb{N}_0}$ arise from the recurrence coefficients $c(n;k):=c_{n/k}$ if $k|n$ and $c(n;k):=1/2$ otherwise. A main objective of this paper is to study expansions in the Chebyshev …