Ask a Question

Prefer a chat interface with context about you and your work?

On wavelets Kantorovich $(p,q)$-Baskakov operators and approximation properties

On wavelets Kantorovich $(p,q)$-Baskakov operators and approximation properties

Abstract In this paper, we generalize and extend the Baskakov-Kantorovich operators by constructing the $(p, q)$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> <mml:mo>)</mml:mo> </mml:math> -Baskakov Kantorovich operators $$ \begin{aligned} (\Upsilon _{n,b,p,q} h) (x) = [ n ]_{p,q} \sum_{b=0}^{ \infty}q^{b-1} \upsilon _{b,n}^{p,q}(x) \int _{\mathbb{R}}h(y)\Psi \biggl( [ n ] _{p,q} \frac{q^{b-1}}{p^{n-1}}y - …