Frobenius Monoidal Functors of Dijkgraaf-Witten Categories and Rigid Frobenius Algebras
Frobenius Monoidal Functors of Dijkgraaf-Witten Categories and Rigid Frobenius Algebras
We construct a separable Frobenius monoidal functor from $\mathcal{Z}\big(\mathsf{Vect}_H^{\omega|_H}\big)$ to $\mathcal{Z}\big(\mathsf{Vect}_G^\omega\big)$ for any subgroup $H$ of $G$ which preserves braiding and ribbon structure. As an application, we classify rigid Frobenius algebras in $\mathcal{Z}\big(\mathsf{Vect}_G^\omega\big)$, recovering the classification of étale algebras in these categories by Davydov-Simmons [J. Algebra 471 (2017), 149-175, arXiv:1603.04650] …