Contrastive Disentangled Learning on Graph for Node Classification
Contrastive Disentangled Learning on Graph for Node Classification
Contrastive learning methods have attracted considerable attention due to their remarkable success in analyzing graph-structured data. Inspired by the success of contrastive learning, we propose a novel framework for contrastive disentangled learning on graphs, employing a disentangled graph encoder and two carefully crafted self-supervision signals. Specifically, we introduce a disentangled …