Warm-Started QAOA with Custom Mixers Provably Converges and Computationally Beats Goemans-Williamson's Max-Cut at Low Circuit Depths
Warm-Started QAOA with Custom Mixers Provably Converges and Computationally Beats Goemans-Williamson's Max-Cut at Low Circuit Depths
We generalize the Quantum Approximate Optimization Algorithm (QAOA) of Farhi et al. (2014) to allow for arbitrary separable initial states with corresponding mixers such that the starting state is the most excited state of the mixing Hamiltonian. We demonstrate this version of QAOA, which we call <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi><mml:mi>A</mml:mi><mml:mi>O</mml:mi><mml:mi>A</mml:mi><mml:mo>&#x2212;</mml:mo><mml:mi>w</mml:mi><mml:mi>a</mml:mi><mml:mi>r</mml:mi><mml:mi>m</mml:mi><mml:mi>e</mml:mi><mml:mi>s</mml:mi><mml:mi>t</mml:mi></mml:math>, by simulating …