On the refined Kaneko–Zagier conjecture for general integer indices
On the refined Kaneko–Zagier conjecture for general integer indices
Abstract The refined Kaneko–Zagier conjecture claims that the algebras spanned by two kinds of “completed” finite multiple zeta values, called $${\widehat{\mathcal {A}}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover><mml:mi>A</mml:mi><mml:mo>^</mml:mo></mml:mover></mml:math> - and $${\widehat{\mathcal {S}}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover><mml:mi>S</mml:mi><mml:mo>^</mml:mo></mml:mover></mml:math> -MZVs, are isomorphic. Recently, Komori defined $${\widehat{\mathcal {S}}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mover><mml:mi>S</mml:mi><mml:mo>^</mml:mo></mml:mover></mml:math> -MZVs of general integer (i.e., not necessarily positive) indices, extending …