Ask a Question

Prefer a chat interface with context about you and your work?

Volterra-type operators mapping weighted Dirichlet space into $$H^\infty $$

Volterra-type operators mapping weighted Dirichlet space into $$H^\infty $$

Abstract The problem of describing the analytic functions g on the unit disc such that the integral operator $$T_g(f)(z)=\int _0^zf(\zeta )g'(\zeta )\,d\zeta $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mn>0</mml:mn> <mml:mi>z</mml:mi> </mml:msubsup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ζ</mml:mi> …