Ask a Question

Prefer a chat interface with context about you and your work?

Infinitely many solutions for quasilinear Schrödinger equation with general superlinear nonlinearity

Infinitely many solutions for quasilinear Schrödinger equation with general superlinear nonlinearity

Abstract In this article, we study the quasilinear Schrödinger equation $$ -\triangle (u)+V(x)u-\triangle \bigl(u^{2}\bigr)u=g(x,u), \quad x\in \mathbb{R}^{N}, $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>−</mml:mo> <mml:mi>△</mml:mi> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>V</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>−</mml:mo> <mml:mi>△</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> <mml:mo>,</mml:mo> …