Epsilon-strongly graded rings: Azumaya algebras and partial crossed products
Epsilon-strongly graded rings: Azumaya algebras and partial crossed products
Abstract Let G be a group, let <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>A</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mo largeop="true" mathsize="160%" stretchy="false" symmetric="true">⊕</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>∈</m:mo> <m:mi>G</m:mi> </m:mrow> </m:msub> <m:msub> <m:mi>A</m:mi> <m:mi>g</m:mi> </m:msub> </m:mrow> </m:mrow> </m:math> {A=\bigoplus_{g\in G}A_{g}} be an epsilon-strongly graded ring over G , let <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>R</m:mi> <m:mo>:=</m:mo> <m:msub> <m:mi>A</m:mi> …