Ask a Question

Prefer a chat interface with context about you and your work?

Exploring current constraints on antineutrino production by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Pu</mml:mi></mml:mrow><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>241</mml:mn></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math> and paths towards the precision reactor flux era

Exploring current constraints on antineutrino production by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Pu</mml:mi></mml:mrow><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>241</mml:mn></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math> and paths towards the precision reactor flux era

By performing global fits to inverse beta-decay (IBD) yield measurements from existing neutrino experiments based at highly $^{235}\mathrm{U}$-enriched reactor cores and conventional low-enriched cores, we explore current direct bounds on neutrino production by the subdominant fission isotope $^{241}\mathrm{Pu}$. For this nuclide, we determine an IBD yield of ${\ensuremath{\sigma}}_{241}=8.16\ifmmode\pm\else\textpm\fi{}3.47\text{ }\text{ }{\mathrm{cm}}^{2}/\mathrm{fission}$, …