Ask a Question

Prefer a chat interface with context about you and your work?

Polynomials taking integer values on primes in a function field

Polynomials taking integer values on primes in a function field

Let $\mathbb{F}_q[x]$ be the ring of polynomials over a finite field $\mathbb{F}_q$ and $\mathbb{F}_q(x)$ its quotient field. Let $\mathbb{P}$ be the set of primes in $\mathbb{F}_q[x]$, and let $\mathcal{I}$ be the set of all polynomials $f$ over $\mathbb{F}_q(x)$ for which $f(\mathbb{P})\subseteq\mathbb{F}_q[x]$. The existence of a basis for $\mathcal{I}$ is established …