Ask a Question

Prefer a chat interface with context about you and your work?

Future instability of FLRW fluid solutions for linear equations of state <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mi>K</mml:mi><mml:mi>ρ</mml:mi></mml:mrow></mml:math> with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>K</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>

Future instability of FLRW fluid solutions for linear equations of state <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mi>K</mml:mi><mml:mi>ρ</mml:mi></mml:mrow></mml:math> with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>K</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>

Using numerical methods, we examine the dynamics of nonlinear perturbations in the expanding time direction, under a Gowdy symmetry assumption, of FLRW fluid solutions to the Einstein-Euler equations with a positive cosmological constant $\Lambda>0$ and a linear equation of state $p = K\rho$ for the parameter values $1/3<K<1$. This paper …