Ask a Question

Prefer a chat interface with context about you and your work?

Separability, Boxicity, and Partial Orders

Separability, Boxicity, and Partial Orders

Abstract A collection $$S=\{S_i, \ldots , S_n\}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>=</mml:mo> <mml:mo>{</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> of disjoint closed convex sets in $$\mathbb {R}^d$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:math> is separable if there exists a …