Ask a Question

Prefer a chat interface with context about you and your work?

The Wallis Products for Fermat Curves

The Wallis Products for Fermat Curves

Abstract After revisiting the properties of generalized trigonometric functions, i.e., the trigonometric function linked to the planar (Fermat) curve $$x^p+y^p=1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , using the tool of Keplerian trigonometry, introduced in (Gambini et al.: Monatsh. Math. …