Fractional Higher Differentiability for Solutions of Stationary Stokes and Navier-Stokes Systems with Orlicz Growth
Fractional Higher Differentiability for Solutions of Stationary Stokes and Navier-Stokes Systems with Orlicz Growth
Abstract We consider weak solutions $(u,\pi ):{\Omega }\to \mathbb {R}^{n}\times \mathbb {R}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi>π</mml:mi> <mml:mo>)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>→</mml:mo> <mml:msup> <mml:mrow> <mml:mi>ℝ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mo>×</mml:mo> <mml:mi>ℝ</mml:mi> </mml:math> to stationary ϕ -Navier-Stokes systems of the type $ \left \{ \begin {array}{ll} -\mathrm {div~} a(x,\mathcal {E} …