Dimension of images and graphs of little Lipschitz functions
Dimension of images and graphs of little Lipschitz functions
A mapping $f\colon X\to Y$ between metric spaces is termed <em>little Lipschitz</em> if the function ${\rm lip}\, f\colon X\to [0,\infty ]$, $${\rm lip}\, f(x)=\liminf_{r\to 0}\frac{{\rm diam}\,f(B(x,r))}{r},$$ is finite at every point. We prove that for