K-theory of noncommutative Bernoulli shifts
K-theory of noncommutative Bernoulli shifts
Abstract For a large class of $$C^*$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> </mml:math> -algebras A , we calculate the K -theory of reduced crossed products $$A^{\otimes G}\rtimes _rG$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mrow> <mml:mo>⊗</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> </mml:msup> <mml:msub> <mml:mo>⋊</mml:mo> <mml:mi>r</mml:mi> </mml:msub> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> of Bernoulli shifts by …