Duality for convolution on subclasses of analytic functions and weighted integral operators
Duality for convolution on subclasses of analytic functions and weighted integral operators
Abstract In this article, we investigate a class of analytic functions defined on the unit open disc <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi class="MJX-tex-caligraphic" mathvariant="script">U</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>:</m:mo> <m:mo>∣</m:mo> <m:mi>z</m:mi> <m:mo>∣</m:mo> <m:mo><</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>}</m:mo> </m:mrow> </m:math> {\mathcal{U}}=\left\{z:| z| \lt 1\right\} , such that for every <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>f</m:mi> <m:mo>∈</m:mo> …