Ask a Question

Prefer a chat interface with context about you and your work?

Critical metrics for quadratic curvature functionals on some solvmanifolds

Critical metrics for quadratic curvature functionals on some solvmanifolds

Abstract We prove the existence of four-dimensional compact manifolds admitting some non-Einstein Lorentzian metrics, which are critical points for all quadratic curvature functionals. For this purpose, we consider left-invariant semi-direct extensions $$G_{\mathcal S}=H \rtimes \exp ({\mathbb {R}}S)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>S</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>H</mml:mi> <mml:mo>⋊</mml:mo> <mml:mo>exp</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> …