Ask a Question

Prefer a chat interface with context about you and your work?

On Group Invariants Determined by Modular Group Algebras: Even Versus Odd Characteristic

On Group Invariants Determined by Modular Group Algebras: Even Versus Odd Characteristic

Abstract Let p be a an odd prime and let G be a finite p -group with cyclic commutator subgroup $G^{\prime }$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>′</mml:mi> </mml:mrow> </mml:msup> </mml:math> . We prove that the exponent and the abelianization of the centralizer of $G^{\prime }$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> …