Ask a Question

Prefer a chat interface with context about you and your work?

Hexagonalization in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>AdS</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msup><mml:mi>S</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mi>T</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math> : Mirror corrections

Hexagonalization in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>AdS</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msup><mml:mi>S</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mi>T</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math> : Mirror corrections

A big open problem in ${\mathrm{AdS}}_{3}\ifmmode\times\else\texttimes\fi{}{S}^{3}\ifmmode\times\else\texttimes\fi{}{T}^{4}$ holographic duality is to compute the conformal field theory (CFT) data of the dual theory. In this direction in [B. Eden, D. l. Plat, and A. Sfondrini, J. High Energy Phys. 08 (2021) 049] it was introduced the hexagonalization framework in the ${\mathrm{AdS}}_{3}$ context. …