Ask a Question

Prefer a chat interface with context about you and your work?

Magnetotransport in overdoped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">La</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>โˆ’</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">Sr</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">CuO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> : Effect of anisotropic scattering

Magnetotransport in overdoped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">La</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>โˆ’</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">Sr</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi mathvariant="normal">CuO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> : Effect of anisotropic scattering

We revisit the Hall effect and magnetoresistivity by incorporating the anisotropic scattering caused by apical oxygen vacancies in overdoped La-based cuprates. The theoretical calculations within the Fermi liquid picture agree well with a handful of anomalous magnetotransport data, better than the results using an isotropic scattering rate alone. In particular, โ€ฆ