HYPERBOLIC MANIFOLDS THAT FIBRE ALGEBRAICALLY UP TO DIMENSION 8
HYPERBOLIC MANIFOLDS THAT FIBRE ALGEBRAICALLY UP TO DIMENSION 8
Abstract We construct some cusped finite-volume hyperbolic n -manifolds $M^n$ that fibre algebraically in all the dimensions $5\leq n \leq 8$ . That is, there is a surjective homomorphism $\pi _1(M^n) \to {\mathbb {Z}}$ with finitely generated kernel. The kernel is also finitely presented in the dimensions $n=7, 8$ , …