Ask a Question

Prefer a chat interface with context about you and your work?

The Eigenvalue Problem for the Regional Fractional Laplacian in the Small Order Limit

The Eigenvalue Problem for the Regional Fractional Laplacian in the Small Order Limit

Abstract In this note, we study the asymptotic behavior of eigenvalues and eigenfunctions of the regional fractional Laplacian $(-{\Delta })^{s}_{\Omega }$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>−</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>Ω</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>s</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> as $s\rightarrow 0^{+}.$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>s</mml:mi> <mml:mo>→</mml:mo> <mml:msup> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> …