Exact results for duality-covariant integrated correlators in $\mathcal{N}=4$ SYM with general classical gauge groups
Exact results for duality-covariant integrated correlators in $\mathcal{N}=4$ SYM with general classical gauge groups
We present exact expressions for certain integrated correlators of four superconformal primary operators in the stress tensor multiplet of \mathcal{N}=4 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mstyle mathvariant="script"><mml:mi>š¯’©</mml:mi></mml:mstyle><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math> supersymmetric Yangā€“Mills (SYM) theory with classical gauge group, G_N <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>G</mml:mi><mml:mi>N</mml:mi></mml:msub></mml:math> = SO(2N) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>=</mml:mo><mml:mi>S</mml:mi><mml:mi>O</mml:mi><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:mn>2</mml:mn><mml:mi>N</mml:mi><mml:mo stretchy="false" form="postfix">)</mml:mo></mml:mrow></mml:math> , SO(2N+1) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>S</mml:mi><mml:mi>O</mml:mi><mml:mo ā€¦