Geometry of conformal <i>η</i>-Ricci solitons and conformal <i>η</i>-Ricci almost solitons on paracontact geometry
Geometry of conformal <i>η</i>-Ricci solitons and conformal <i>η</i>-Ricci almost solitons on paracontact geometry
Abstract We prove that if an <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>η</m:mi> </m:math> \eta -Einstein para-Kenmotsu manifold admits a conformal <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>η</m:mi> </m:math> \eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>η</m:mi> </m:math> \eta -Ricci soliton is Einstein if its potential …