On an Equivalence of Divisors on $\overline {\text {M}}_{0,n}$ from Gromov-Witten Theory and Conformal Blocks
On an Equivalence of Divisors on $\overline {\text {M}}_{0,n}$ from Gromov-Witten Theory and Conformal Blocks
Abstract We consider a conjecture that identifies two types of base point free divisors on $\overline {\text {M}}_{0,n}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mo>¯</mml:mo> </mml:mover> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> . The first arises from Gromov-Witten theory of a Grassmannian. The second comes from …